MEN: Multi-Attribute Feature Selection for Face Recognition
نویسندگان
چکیده
منابع مشابه
Structured Multi-class Feature Selection for Effective Face Recognition
This paper addresses the problem of real time face recognition in unconstrained environments from the analysis of low quality video frames. It focuses in particular on finding an effective and fast to compute (that is, sparse) representation of faces, starting from classical Local Binary Patterns (LBPs). The two contributions of the paper are a new formulation of Group LASSO for structured feat...
متن کاملMulti-dimensional subspace based feature selection for face recognition
In this project, we propose a novel kernel named Adaptive Data-dependent Matrix Norm Based Gaussian Kernel (ADM-Gaussian kernel) for facial feature extraction. As a popular facial feature extraction method for face recognition, the current kernel method endures some problems. Firstly, the face image must be transformed to the vector, which leads to the large storage requirements and the large c...
متن کاملIllumination Invariant Feature Selection for Face Recognition
We propose a novel hybrid illumination invariant feature selection scheme for face recognition, which is a combination of geometrical feature extraction and linear subspace projection. By local geometry feature enhancement technique, neighborhood histogram equalization (NHE) in our experiment, some illegible edges due to week illumination will be enhanced effectively. Then we applied classic li...
متن کاملGabor Feature Selection for Face Recognition
A discriminative and robust feature kernel enhanced informative Gabor feature is proposed in this paper for face recognition. Mutual information is applied to select a set of informative and non-redundant Gabor features, which are then further enhanced by Kernel methods for recognition. Compared with one of the top performing methods in the 2004 Face Verification Competition (FVC2004), our meth...
متن کاملClass-Dependent Feature Selection for Face Recognition
Feature extraction and feature selection are very important steps for face recognition. In this paper, we propose to use a classdependent feature selection method to select different feature subsets for different classes after using principal component analysis to extract important information from face images. We then use the support vector machine (SVM) for classification. The experimental re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer Applications
سال: 2014
ISSN: 0975-8887
DOI: 10.5120/16178-4469